Analysis of time-stepping methods for the monodomain model
نویسندگان
چکیده
To a large extent, the stiffness of the bidomain and monodomain models depends on the choice of the ionic model, which varies in terms of complexity and realism. In this paper, we compare and analyze a variety of time-stepping methods: explicit or semi-implicit, operator splitting, exponential, and deferred correction methods. We compare these methods for solving the bidomain model coupled with three ionic models of varying complexity and stiffness: the phenomenological Mitchell-Schaeffer model, the more realistic Beeler-Reuter model, and the stiff and very complex ten Tuscher-Noble-Noble-Panfilov (TNNP) model. For each method, we derive absolute stability criteria of the spatially discretized monodomain model and verify that the theoretical critical time-steps obtained closely match the ones in numerical experiments. We also verify that the numerical methods achieve an optimal order of convergence on the model variables and derived quantities (such as speed of the wave, depolarization time), and this in spite of the local non-differentiability of some of the ionic models. The efficiency of the different methods is also considered by comparing computational times for similar accuracy. Conclusions are drawn on the methods to be used to solve the monodomain model based on the model stiffness and complexity, measured respectively by the eigenvalues of the model’s Jacobian and the number of variables, and based on strict stability and accuracy criteria.
منابع مشابه
Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology
In this work adaptive and high resolution numerical discretization techniques are demonstrated for solving optimal control of the monodomain equations in cardiac electrophysiology. A monodomain model, which is a well established model for describing the wave propagation of the action potential in the cardiac tissue, will be employed for the numerical experiments. The optimal control problem is ...
متن کاملFractional Order Glucose Insulin System Using Fractional Back-Stepping Sliding Mode Control
In this paper, based on a fractional order Bergman minimal model, a robust strategy for regulationof blood glucose in type 1 diabetic patients is presented. Glucose/insulin concentration in the patientbody is controlled through the injection under the patients skin by the pump. Many various con-trollers for this system have been proposed in the literature. However, most of the...
متن کاملStrongly stable multi-time stepping method with the option of controlling amplitude decay in responses
Recently, multi-time stepping methods have become very popular among scientist due to their high stability in problems with critical conditions. One important shortcoming of these methods backs to their high amount of uncontrolled amplitude decay. This study proposes a new multi-time stepping method in which the time step is split into two sub-steps. The first sub-step is solved using the well-...
متن کاملAdaptive attitude controller of a reentry vehicles based on Back-stepping Dynamic inversion method
This paper presents an attitude control algorithm for a Reusable Launch Vehicle (RLV) with a low lift/drag ratio (L/D < 0.5), in the presence of external disturbances, model uncertainties, control output constraints and the thruster model. The main novelty of proposed control strategy is a new combination of the attitude control methods included backstepping, dynamic inversion and adaptive cont...
متن کاملA General Solution for Implicit Time Stepping Scheme in Rate-dependant Plasticity
In this paper the derivation of the second differentiation of a general yield surface implicit time stepping method along with its consistent elastic-plastic modulus is studied. Moreover, the explicit, trapezoidal implicit and fully implicit time stepping schemes are compared in rate-dependant plasticity. It is shown that implementing fully implicit time stepping scheme in rate-dependant plasti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017